Мы тут

                     8 (918) 402 75 96    Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

  • Экологично

    С технологиями ООО "ИЭТ-Геотерм" в Вашем доме будет благоприятный экологический фон, а природа вокруг останется нетронутой.
  • Надёжно

    По сравнению с традиционными решениями, предлагаемые нами технологии являются более надёжными и безопасными.
  • Выгодно

    Проекты, выполненные компанией ООО "ИЭТ-Геотерм" по Вашему заказу быстро окупаются.
  • Цените время

    Народная мудрость гласит: Готовь "сани" летом, а "телегу" - зимой! Принимайте решение об установке теплового насоса сейчас!
  • 1
  • 2
  • 3
  • 4

Опросный лист для формирования коммерческого предложения Скачать

Прайс-лист ТНУ для индивидуальных домов и коттеджейСкачать

japan

Утилизация тепла канализационных стоков в Японии.

Н.В.Шилкин, инженер:

Общие изменения в экономике России привели к пересмотру взглядов на использование нетрадиционных источников энергии. Учитывая, что территория нашего государства находится в широтах, где наружная температура воздуха опускается ниже 0°С в течение 6–8 месяцев в году, в России расход топлива на теплоснабжение превосходит расход топлива на электроснабжение в 1,5–2 раза. Следовательно, с ростом цен на топливо, тарифов на его доставку возникает необходимость решать задачи по уменьшению потребления топливных ресурсов. Существует также проблема изношенности тепловых сетей в системах централизованного теплоснабжения. Холодная зима 2002–2003 годов, оставив без тепла целые регионы России, наглядно это продемонстрировала. В связи с вышеуказанными проблемами решение вопросов энергосбережения и надежного теплоснабжения приобрело колоссальное значение. В странах Западной Европы, США и Японии уделяется большое внимание использованию альтернативных источников энергии. Одним из таких источников является низкопотенциальное тепло, передаваемое потребителю посредством теплового насоса. В данной статье рассматривается использование тепловых насосов, утилизирующих тепло канализационных стоков.

Принцип действия тепловых насосов:

Тепловой насос представляет собой термодинамическую установку, в которой благодаря затрате механической энергии теплота от низкопотенциального источника передается потребителю при более высокой температуре.

Парокомпрессионный тепловой насос состоит из испарителя, компрессора, посредством которого происходит сжатие паров рабочей жидкости (холодильного агента), конденсатора, в котором происходит переход парообразного холодильного агента в жидкое состояние, и дроссельного вентиля, в котором происходит процесс дросселирования, т. е. необратимого расширения жидкости с понижением давления и температуры. В результате часть жидкости превращается в пар, при этом ее энтальпия остается неизменной. В испарителе поддерживаются более низкие, а в конденсаторе более высокие температура и давление холодильного агента. Холодильный агент в конденсаторе превращается в жидкость, затем в дроссельном вентиле его давление понижается и он частично превращается в пар. Теплота, отводимая от конденсатора, используется для нагревания теплоносителя.

Тепло канализационных стоков.

Холодная вода поступает зимой в здание с температурой 5–8°С. Затем она прогревается в трубопроводах, бачках, нагревается, смешиваясь с горячей водой, и покидает здание с температурой 20–30°С. Канализационные стоки уносят с собой очень большое количество тепла. Современные теплонасосные установки позволяют утилизировать тепло канализационных стоков и приблизить их температуру к температуре поступающей воды.

Первая система DHC в Японии, использующая необработанные сточные воды как источник нагрева и охлаждения воды.

Введение. 

Впервые в Японии, в районе Koraku 1-chome в Токио, для теплоснабжения района установлена система DHC, использующая тепло необработанных сточных вод. Как ожидается, использование тепла сточных вод уменьшит потребление энергии и выброс парниковых газов. Применение этой системы уменьшает потребление энергии на 20%, выброс CО2 и NOx на 40 и 37% соответственно. 

Сточные воды уже использовались в других проектах как источник низкопотенциального тепла для тепловых насосов. Однако проект в Токийском районе Koraku 1-chome уникален тем, что впервые в Японии используются неочищенные, необработанные сточные воды; позволяет использовать тепловые насосы не только на очистных станциях, но и на станциях перекачки и канализационных сетях. 

В дальнейшем ожидается значительное увеличение использования сточных вод в качестве источника низкопотенциального тепла. 

Цель проекта. 

Объем канализационных стоков, производимых в огромных количествах большими городами, практически не изменяется в течение года. Температура сточных вод ниже температуры наружного воздуха в летнее время и выше в зимнее. Это делает их идеальным источником низкопотенциального тепла для использования в тепловых насосах. По некоторым оценкам, в городские коммуникации вместе со сточными водами сбрасывается около 40% использованного тепла. Цель проекта заключается в том, чтобы использовать этот огромный источник тепла для районной системы DHC, работающей на тепловых насосах, экономя значительное количество энергии и существенно сокращая выбросы NOx и CО2. 

Описание установки. 

Теплообменники на DHC-станции сконструированы ниже насосной станции для перекачки сточных вод. Они используются для передачи тепловому насосу тепла сточных вод, текущих через насосную станцию. Тепловой насос позволяет получить охлажденную или подогретую воду (рис. 1). Эта система уменьшает потребление энергии (электроэнергии) на 20% по сравнению с тепловым насосом, использующем воздух в качестве низкопотенциального источника тепла. 

Для удаления большинства взвешенных твердых частиц в стоках применяется автоматический фильтр (рис. 2). Для защиты от коррозии деталей насоса используется нержавеющая сталь, для труб теплообменника – титан.

 

Рисунок 2. Схема системы DHC, установленной в районе Koraku 1-chome в Токио, Япония.

yap1

Очищаются трубы теплообменника установленными внутри щетками. На DHC-станции смонтированы 3 тепловых насоса, 2 с охлаждающей способностью 10,5 МВт и нагревающей способностью 12,8 МВт каждый и 1 тепловой насос с охлаждающей способностью 3,9 МВт и нагревающей – 5 МВт. Этот насос используется периодически, когда возникает необходимость подачи горячей и холодной воды одновременно. Расход сточных вод, проходящих через DHC-станцию, составляет до 129 600 м3 в день. Станция охлаждает воду до +7°C и нагревает до +47°C и обеспечивает этой водой здание общей площадью 126 400 м2, подавая ее через тепловую сеть, выполненную по 4-трубной схеме, проложенную под землей на глубине 7–8 м.

Для выравнивания тепловой нагрузки и использования недорогого ночного электричества на станции установлены баки-аккумуляторы общим объемом 1 520 м3.

С апреля 1995 по март 1996 года станция DHC обеспечила 37 741 ГДж тепловой энергии для охлаждения воды и 9 151 ГДж для получения горячей воды. В августе 1995 года коэффициент преобразования теплонасосной установки составил 4,3. В феврале 1996 года – 3,9.

  • Все
  • Аналитика
  • ТНУ
  • Статья
  • По умолчанию
  • Заголовок
  • Дата
  • Произвольно
  • TNU

    В статье рассмотрен вариант качественной сравнительной оценки целесообразности строительства систем тепло/холодоснабжения на базе теплонасосной технологии относительно «традиционных» технологических решений и сроков относительной окупаемости для объектов городской, курортной инфраструктуры в южных регионах России (Крым, Кавказ, Кубань, Азово-Черноморское побережье).

    Природно-климатические условия юга России. Особенности Черноморского побережья Кавказа и Крыма.

    Южные районы России, рассматриваемые в данной статье — это регионы Краснодарского, Ставропольского края,

    Читать подробнее
    • Аналитика
  • TNU.png

    Суть технологии теплонасосной установки ( ТНУ ) сводится к процессу «концентрации» рассеянного низко-потенциального тепла ( НПТ ) окружающего воздуха, вод поверхностных водоёмов, грунтовой воды из скважин и преобразования его в высокопотенциальное тепло и нагревом теплоносителя (воды) до температуры +60С в количестве, достаточным для обеспечения отопления и горячего водоснабжения ( ГВС ), а так же при выработке воды с температурой +7С при "реверсивном" режиме работы для обеспечения

    Читать подробнее
    • ТНУ
  • Plus.png

    Технология ТНУ обладает рядом положительных качеств:

    1) абсолютная экологичность, нет выбросов продуктов сгорания газа , других топлив или компонентов;

    2) высокая степень пожаро-взрыво-безопасности, т.к. нет систем или агрегатов с процессом горения и высокой температурой;

    3) оборудование легко встраивается, интегрируется в архитектурно - строительные решения здания, комплекса т.к. не требует отдельных сооружений, строений, может размещаться в подвале, на крыше, чердаках или поэтажных технических

    Читать подробнее
    • ТНУ
  • Moneysave

    Экономическая эффективность применения теплового насоса  ( ТНУ ) обоснована тем, что современные жилые, гостиничные комплексы, как правило требуют совместного решения вопросов отопления, кондиционирования и ГВС ( горячего водоснабжения ). Традиционно эта задача решается путём строительства газовой котельной или подключением к централизованным сетям теплоснабжения , а к ним дополнительно строится система кондиционирования на базе или абсорбционных холодильных машин (АБХМ) использующих энергию горячей воды, пара или

    Читать подробнее
    • ТНУ
  • Calculate

    По степени использования энергии из альтернативных источников Россия пока отстаёт не только от «продвинутого» в этом вопросе Евросоюза, но и от мира в целом. По данным Международного энергетического агентства (International Energy Agency, IEA), на альтернативные источники в 2008 году приходилось 2,8% вырабатываемой в мире электроэнергии. В России эта доля оценивается примерно в 1,5%.

    Общий объём выработки электроэнергии в мире –

    Читать подробнее
    • Аналитика
  • Obosnovanie.png

    Экологическое и технико-экономическое обоснование применения технологии « теплового насоса » при выборе концепции автономного энергоцентра тепло/ холодоснабжения ( ГВС, отопление, кондиционирование ) на примере горнолыжного курорта «Роза Хутор», г. Сочи , Адлерский район .

    Горнолыжный курорт «Роза Хутор» располагается на территории Кавказского государственного биосферного заповедника, что предъявляет повышенные экологические требования к данному комплексу особенно в период эксплуатации. Одним из таких требований является вопрос о выбросах

    Читать подробнее
    • Аналитика
Загрузите большеНажмите SHIFT чтобы загрузить все статьиЗагрузить все статьи

ВАЖНАЯ ИНФОРМАЦИЯ!

Коммерческое предложение для ИЖС от компании ООО «ИЭТ–Геотерм»!

Ориентировочная стоимость теплопункта тепло/холодоснабжения и ГВС на базе технологии теплового насоса для индивидуальных жилых домов.

Источник НПТ - воздух до -20С

Обслуживаемые системы: Отопление, ГВС, Кондиционирование.                                          

  

Площадь помещений, м2

 

  

Требуемая тепловая мощность,кВт 

 

Основное оборудование (марка) 

  

Стоимость,тыс. руб.

 
  Проектирования   Оборудования   Строительства   ВСЕГО 
 

100

 
 

7

 
  

ТН воздух-вода,EVI

 

ЦН

 

Баки теплоаккумуляторы

 

 

40 

 

400 

 

90 

 

530 

 

200

 
 

12

 

 

40 

 

620 

 

90 

 

750

 

300

 
 

17

 

 

40 

 

820 

 

90 

 

950 

 

Источник НПТ - вода (грунтовая из скважины)*

Обслуживаемые системы: Отопление, ГВС, Кондиционирование.                                        

Площадь помещений, м2 Требуемая тепловая мощность,кВт 

Основное оборудование

(марка) 

  Стоимость,тыс. руб. 

   Проектирования 

  Оборудования   Строительства   ВСЕГО 

 

100 

 

7 

 

ТН вода-вода

 

ЦН

 

Баки теплоаккумуляторы Теплообменник пластинчатый Скважинный насос

 

 

50 

 

320 

 

120 

 

490 

  

200 

  

12 

  

50 

  

530 

  

120 

  

700 

  

300 

  

17 

  

50 

  

730 

  

120 

  

900

 *В стоимость не включены затраты на выполнение буровых работ.

 

Сравнительные показатели стоимости 1 Гкал тепла при разных видах топлива (по тарифам 1 квартала 2017г. для г.Сочи):

- газ 1 м3 = 5.81 руб;

- эл.энергия 1 кВт*час = 4.73 руб.

- от котельной на электричестве ≈ 5 500 руб;

- от котельной на дизельном топливе ≈ 4 100 руб;

- от центральной теплосети ≈ 3 050 руб;

- от котельной на природном газовом топливе ≈ 950 руб;

- от котельной на сжиженном газе ≈ 3 100 руб;

- ТНУ «воздух – вода» ≈ 1 500 руб;

- ТНУ «вода – вода» ≈ 1 150 руб. 

Сравнительные показатели стоимости 1 Гкал холода при использовании соответсвующих систем:

- сплит – система ≈ 2000 руб

- мультизональная – система ≈ 1 700 руб

- ТНУ «воздух – вода» ≈ 1 500 руб

- ТНУ «вода – вода» ≈ 1 100 руб

«пассивное кондиционирование» до 450 руб.

«Пассивное кондиционирование» - это режим, при котором вода в контуре фанкойлов охлаждается грунтовой водой из скважины посредством разделительного теплообменника, минуя контур охлаждения теплового насоса, т.е. ТНУ при определённых тепловых нагрузках не работает на охлаждение и тем самым экономится электроэнергия, затрачиваемая на работу компрессора.

Стоимость рассчитана исходя из курса 1 доллар = 60 руб и применения наиболее распространенных систем тепло/холодоснабжения. Более подробный расчет стоимости непосредственно для конкретного объекта может быть выполнен после согласования Технического задания и выполнения проектных работ. 

Решение вопроса горячего водоснабжения без «головной боли» предлагает компания ООО «ИЭТ–Геотерм»!

Установите в своём доме, офисе, предприятии, гостинице, кафе, баре, ресторане наше оборудование и Вы получите стабильное горячее водоснабжение в любое время суток, сезона, года по низким ценам!

Тепловой насос (ТН) «воздух–вода» с баком накопителем – высокоэкономичная технология для подготовки горячей воды.

75% энергии для подогрева воды тепловой насос (ТН) «выкачивает» из окружающего воздуха и только 25% из электросети.

b1               b2

Тарифы: (г. Сочи, лето 2014 г.)

- на электроэнергию от ОАО «КубаньЭнергоСбыт» = 3,72 руб./кВт*час;

- сетевую (холодную и горячую) воду от МУП «СочиТеплоЭнерго»: - х.в. = 27,60 руб/м3; - тепл.эн. = 3047,49 руб./Гкалл.

- сетевой газ от ООО «Газпром межрегионгаз Краснодар» = 5,06 руб./м3.

Стоимость 1 м3 горячей воды (Тг.в. = +50С):

- от электрического накопительного нагревателя (типа «Аристон», «Электролюкс») = 210 руб./м3;

- от городского водопровода горячей воды = 195 руб./м3; - от теплового насоса «воздух – вода» = 70 руб./м3;

- от индивидуального газового котла = 60 руб./м3.

Пример преимуществ установки теплового насоса с баком 200л.:

- низкая стоимость 1,0 м3 горячей воды;

- низкая потребляемая электрическая мощность = 0,8 кВт;

- оптимальная ёмкость бака-накопителя = 200 л.;

- разогрев 200 л. воды от: +10С до +50С за 2,5 часа (ночной режим); +45С до +50С за 10 минут (дневной режим);

- максимальная температура нагрева воды до +60С;

- универсальность установки в любом месте: - на улице - летнее кафе, бар, ресторан; - в помещении – кухня, прачечная, химчистка, подвал, цоколь, чердак, вентиляционная камера;

- утилизация тепла от кухни, вентиляции – дополнительное кондиционирование «горячих» рабочих мест;

- небольшие габариты (Ф=560мм, Н=1750мм) и вес (сухой, без воды, G = 80 кГ);

- внешние подключения: - городская электросеть - 220В, 1ф, 50 Гц; - городской питьевой водопровод;

- установка теплового насоса (ТН) не требует каких–либо разрешений и согласований в надзорных гос. органах;

- высокая надёжность, безопасность и простота эксплуатации (как холодильник – установил рабочий режим и забыл, где он находится);

- срок службы ТН не менее 15 лет;

- срок окупаемости оборудования 2